If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+2x-1640=0
a = 1; b = 2; c = -1640;
Δ = b2-4ac
Δ = 22-4·1·(-1640)
Δ = 6564
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6564}=\sqrt{4*1641}=\sqrt{4}*\sqrt{1641}=2\sqrt{1641}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{1641}}{2*1}=\frac{-2-2\sqrt{1641}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{1641}}{2*1}=\frac{-2+2\sqrt{1641}}{2} $
| 70+-1y+y=70 | | 8a+20=-4+2a | | e+3=2.5 | | 4(b+5)–5b=2(b–8)+9 | | 6z-5=1 | | 5x+3=2x-9 | | 4n-3=n+ | | X^3+6x+12=0 | | 2(y-8)=26 | | C(x)=40.00-0.09x | | 4(2a-1)=-22 | | -3x+5=-2(x+7)+2x+4 | | 16=4(x-5 | | 180=x+2x-9 | | 4w+1–7w=-11 | | r/4-12=- | | –8p+6p–2= | | y/5=5/25 | | (x)=4x+2@x=3.5 | | 6x−1=2x+9 | | 360=x+2x+9 | | 360=2x+9 | | 21y-9=y | | 0=-16x^2+64x+7 | | 3p÷5=12 | | 7x-3x=(7-3)X=4x | | 10x84=24 | | 17.02=10r−78.22. | | 16+x=12/ | | 2x²+5x–6x=3 | | 7(35)+10.5x=308 | | 2(5x+4)+(x-4)=72 |